|-------| |-------| |-------|
| | | | | | |
|---O | |---O | | O |
| | | | | |
|-------| |-------| |-------|
A B C
|-------| |-------| |-------|
| | | | | |
| O | | O | | O |
| | | | | | | | |
|-------| |-------| |-------|
D E F
|-------| |-------| |-------|
| | | | | |
| O | | O---| | O |
| | | | | | | |
|-------| |-------| |-------|
G H I
The goal is to find a minimal sequence of moves to return all the dials to 12 o'clock. Nine different ways to turn the dials on the clocks are supplied via a table below; each way is called a move. Select for each move a number 1 through 9 which will cause the dials of the affected clocks (see next table) to be turned 90 degrees clockwise.
| Move | Affected clocks |
| 1 | ABDE |
| 2 | ABC |
| 3 | BCEF |
| 4 | ADG |
| 5 | BDEFH |
| 6 | CFI |
| 7 | DEGH |
| 8 | GHI |
| 9 | EFHI |
Example
Each number represents a time accoring to following table:9 9 12 9 12 12 9 12 12 12 12 12 12 12 12 6 6 6 5 -> 9 9 9 8-> 9 9 9 4 -> 12 9 9 9-> 12 12 12 6 3 6 6 6 6 9 9 9 12 9 9 12 12 12
[But this might or might not be the `correct' answer; see below.]